Misinformation in India’s 2019 National Election

KIRAN ARABAGHATTA BASAVARAJ

University of Exeter and University College London, United Kingdom

This study investigates the dynamics and dissemination of political misinformation in India’s 2019 national election campaign, drawing on cases identified by internationally verified fact-checkers. Many political parties and their affiliates or supporters deployed both positive (pro-party) and negative (anti-party) misinformation claims. The distribution of measures of engagement with misinformation claims on Facebook (N=4,478) show BJP, INC and CPIM were most often deploying positive or pro-party misinformation, whereas more parties were targeted with negative or anti-party misinformation. The incumbent BJP was the target of the largest number of negative misinformation claims that came from challenger parties and the INC in particular, confirming extant research from Western contexts that challengers go negative and attack incumbents while the latter tend to focus more on accomplishments. Negative or anti-party misinformation was deployed more than twice as often as pro-party misinformation and diffused farther than positive or pro-party claims.

Keywords: misinformation, India, 2019 Lok Sabha election, Facebook, opposition parties, incumbent, social media, fact-checkers

Kiran Arabaghatta Basavaraj: ka385@exeter.ac.uk / k.basavaraj@ucl.ac.uk
Date submitted: 2021-08-17

1 This study was supported by several institutions and individuals. I want to thank the UK’s Economic and Social Research Council (ESRC) and the South West Doctoral Training Partnership for my doctoral funding and my dissertation supervisor Prof. Susan A. Banducci in the Dept. of Politics and the Q-Step Centre at the University of Exeter. I want to thank Prof. Holli A. Semetko in the Dept. of Political Science at Emory University for including me on the team of co-investigators for the Social Science One (SSO) data access project supported by the Emory University Research Council. This study relies on Facebook (now Meta) data obtained via CrowdTangle. I also want to thank the many members of the Meta Academic partnerships team.

Copyright © 2022 (Kiran Arabaghatta Basavaraj). Licensed under the Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd). Available at: http://journalqd.org
After the surprising outcomes of the 2016 Brexit referendum in the UK and the U.S. presidential election later that year, citizens in many democracies became aware of the possible dangers of misinformation in electoral campaigning. Indians were no exception. Internet access had expanded rapidly in the four years leading up to the national election, especially in rural parts of the country. Internet users had reached 500 million by March 2019, at the start of the campaign, and 97% used a mobile device to go online (Mathur, 2019). With many political parties in India expected to campaign heavily on social media and millions of new internet and social media users, there was ample opportunity for users to be exposed to misinformation. Many Indians indeed expressed concern about misinformation on social media in the run up to the 2019 national election to the Lok Sabha, the national parliament (Pew Research Center, 2019). This study focuses on the problem of misinformation in the 2019 campaign, its characteristics, and engagement with misinformation claims posted on Facebook India.

A number of studies have been published on the characteristics of campaign misinformation on social media, but these have primarily focused on Western contexts. Characteristics studied include, for example, diffusion (Allcott et al., 2019), engagement (Guess, Aslett, et al., 2021), virality (Vosoughi et al., 2018) and co-sharing (Grinberg et al., 2019). Although Panda et al. (2020) examine Twitter activity during India’s 2019 national election, they did not study misinformation. Scholars have creatively explored the characteristics of misinformation on WhatsApp in India, which is discussed further below (Garimella & Eckles, 2020; Kazemi et al., 2021). However, the dissemination and characteristics of misinformation on large social media platforms such as Facebook India and the use of affordances provided by the platform that signal engagement with misinformation in 2019, has not been studied to the best of my knowledge. Before turning to research questions, data and analysis, I first discuss concerns and research about WhatsApp in India in 2019, as well as the literature on misinformation.
WhatsApp and Facebook

WhatsApp was the most widely used medium of communication in India by 2019 followed closely by Facebook. WhatsApp is an encrypted group messaging service and should not be described as social media because of structural and functional differences, unlike WeChat. Before the 2019 campaign began, in order to diminish the spread of misinformation, WhatsApp groups were limited in size to 256 members, and forwarding was limited to only 5 other groups or individuals for any post. This means that a maximum of 5*256 groups or 1,280 users could be reached by one user who was forwarding misinformation initially. Assuming each member in each of those 5 groups then forwarded this misinformation, 6,400 groups would be reached and WhatsApp would likely have been alerted to coordinated action on the platform. These limits on group size and forwarding came about due to tragic events caused by rumors spread on the platform in prior years in non-election periods (Dutt D’Cunha, 2018; Farooq, 2018; Lok Sabha, 2017).

Empirical evidence from a study of WhatsApp groups shows that the use of WhatsApp as a propaganda tool was widespread during the 2019 election (Bengani, 2019). Out of 1.09 million WhatsApp posts studied by Bengani (2019) from 960 private groups on WhatsApp, those shared included texts (45%), images (28%), links (13%), videos (11%) and audio files (1%). However, Bengani (2019) reported that of the top ten items shared most widely on WhatsApp during the campaign, the top two did not mention politics or political parties. Whether or not these top ten most widely shared items contained misinformation is not discussed by Bengani (2019), as the focus of her research was on how to study private WhatsApp groups.

Garimella & Eckles (2020) show that WhatsApp was also a medium of misinformation dissemination, using data they obtained from public WhatsApp groups. Their evidence indicates that the highest peaks for misinformation were in mid-February when a terrorist attack in Pulwama killed 40 young Indian members of the Central Reserve Police Force, and late-February with the bombing of Balakot by the Indian Air Force (IAF)
to eliminate the terrorist training camp in Pakistan. Some 1500-1800 images were shared at peaks in the first instance and over 2000 images were shared around the Balakot airstrike. The next but much lower peak was in early April, with the first phase of voting that began on the 11th of April, when it appears from the timeline that between 500 and 800 images were shared. Perhaps the Election Commission of India’s Model Code of Conduct (MCC), and the penalties for violating the MCC, which went into effect with the official start of the campaign announced on March 10th, served to constrain those who were circulating misinformation on WhatsApp.

A project by the NGO Meedan facilitated a WhatsApp 2019 election misinformation tipline, elsewhere described as a Distributed Human Computation approach (Yang et al., 2011). The project was organized by PROTO—a media research and training organization—and users could submit WhatsApp messages to be fact-checked during the 2019 campaign. Kazemi et al. (2021) compare data from WhatsApp users using this tipline with messages circulating in the large public groups mentioned above by Garimella & Eckles (2020), during the 2019 election campaign, and concluded “tiplines can be an effective source for discovering content to fact-check” (Kazemi et al., 2021, p. 1). The study found a total of 1,945 unique messages related to the election, of which the largest cluster included 213 unique messages with misinformation telling voters to ask for a “challenge vote” or “tender vote” if they were not on the voter list or marked as already voting, which was circulated in many languages and reported by the fact-checking team at The Times of India (Kazemi et al., 2021, p. 7). Within the remaining 1,732 election related items the authors report that other prominent themes included “messages attacking BJP leader Narendra Modi, pro-BJP messages, and messages criticizing Congress Party leader Rahul Gandhi,” but the authors provide no additional numbers on those messages (Kazemi et al., 2021, p. 7).

Taken together, these studies provide a mix of data-driven evidence and cases based on reports relating to WhatsApp in 2019 and are limited to describing volume and type of the content. Given the structural and functional limitations of WhatsApp, capturing
engagement with content is highly unlikely. There has been little or no empirical research on misinformation posted on Facebook, despite the fact that the platform has far more registered accounts than Twitter in India. Facebook has 410 million users compared to 17.5 million on Twitter in India (PIB, 2021). This study addresses the gap in the research literature and focuses on the characteristics of misinformation and engagement with it during the 2019 election campaign on Facebook. Before discussing the data and methods, it is important to understand how misinformation is identified.

Identifying Misinformation

Although scholars have defined “fake news” or misinformation differently, the common defining characteristics of misinformation are falsity and motivation (Shin et al. 2018). In the vast digital information arena, identifying misinformation is a complex phenomenon. To determine whether a piece of information is correct, extensive human-machine efforts are required, i.e., reliance on algorithms, human verification, or both (Ciampaglia et al., 2015; Nguyen et al., 2018). Fact-checkers play a significant role in identifying and debunking misinformation and many social media platforms utilize their services to flag the content (Oeldorf-Hirsch et al., 2020). For example, Facebook applies different algorithms to identify and stop the fake content being spread, at the same time the company partners with third-party fact-checkers to identify and label posts related to misinformation (Allcott et al., 2019). Various studies have shown both the effectiveness and ineffectiveness of fact-checking with respect to correcting misinformation, fact-checker trustworthiness, and labelling posts on social media containing candidate evaluations (Brandtzaeg & Følstad, 2017; Freelon & Wells, 2020; Nyhan & Reifler, 2015; Oeldorf-Hirsch et al., 2020; Wintersieck, 2017).

Fact-checking platforms are by no means perfect repositories of misinformation and likely do not capture the entire population of false content emanating from different sources in a campaign in part because the large digital landscape of misinformation may overwhelm the fact-checking process (Shao et al., 2016). Regardless of these challenges
and limitations, scholars have accepted that fact-checkers provide the best possible estimate of the false content and its sources, which is why many prominent and widely cited publications on misinformation and rumor on social media are based on data from fact-checked sources. For example, in the U.S. context, Allcott and Gentzkow (2017) rely on fact-checkers as a source to identify posts containing misinformation on Facebook. Guess, Nagler, and Tucker (2019) investigate the spread of fake news on Facebook by using URL domains of fake news sources based on fact-checker data. A number of studies utilize fact-checker data to study fake news and political rumors on Twitter (Grinberg et al., 2019; Shin et al., 2017). Vosoughi, Roy, and Aral (2018) use the content of false news from fact-checkers to identify rumor diffusion and whether true or false rumors travel further and faster on Twitter.

Beyond the U.S. context, Resende et al. (2019) refer to a fact-checker to identify misinformation on WhatsApp groups in Brazil. Khaldarova and Pantti (2016) explore the Russian fake news narrative in Ukraine using fact-checked stories on Twitter. In India, Garimella and Eckles (2020) use information from fact-checkers to annotate and identify the misinformation in the image content on WhatsApp. A report by Campbell-Smith and Bradshaw (2019) emphasizes the importance of fact-checking platforms in debunking misinformation. To this end, it is widely accepted across different studies that fact-checked stories can be used in characterizing misinformation on social media platforms, which might be described as a best practice for those conducting research on misinformation.

This study follows the best practice to identify misinformation by using the stories flagged by Indian fact-checking firms that were signatories of International Fact-Checking Network (IFCN). I report on these findings first. I then discuss how I coded each of these misinformation cases for a number of variables including whether the misinformation was negative (anti-party) or positive (pro-party) and the political party or parties mentioned in each claim. I then show how these negative (anti-party) and positive (pro-party) misinformation posts on Facebook were more (or less) often shared, liked and commented upon with respect to the political parties that each post mentioned.
The public pages and groups (or sources) generating several thousand misinformation posts on Facebook India had a total of 12.51 million posts during the campaign, including the documented fact-checked misinformation. Using a decision rule based on the number of posts and the party with the most misinformation posts, I label each page posting misinformation as pro-party or anti-party (naming the party), and I illustrate this below with examples from the top twenty pages posting misinformation.

This study is the first to consider the partisan nature of fact-checked misinformation posts on Facebook during the 2019 election campaign. Before turning to discuss research questions and methods, I briefly discuss the partisan nature of misinformation claims.

Partisan Nature of Misinformation Claims

Research on affective polarization, negative effect and echo-chambers have discussed the fact that pro- and anti-party claims are often blended in campaign communication to mobilize the electorate (Bail et al., 2018; Barberá et al., 2015; Flaxman et al., 2016; Iyengar et al., 2012; Rusconi et al., 2020). Hameleers and van der Meer (2020) examine the nexus between polarization and misinformation along with an assessment of the effectiveness of fact-checkers. Using experiments, they show that correction by fact-checkers reduces polarization, however, it is conditioned upon prior beliefs and congruency bias. On social media, people subscribe to specific pages or groups and follow politicians and influencers with the expectation that the content they provide fulfils their pre-existing beliefs, as in uses and gratification theory (Donohew et al., 1987). The activation theory of information exposure also suggests that people subscribe to pages or groups that produce content to satisfy their differing needs (Donohew et al., 1998). Partisanship has been identified as a reason for engaging with fake news sources, which suggests that partisan users are selectively exposing themselves to information that aligns with their partisan views (Grinberg et al., 2019).
Pro- and anti-party false claims were used as a stimulus to study the effectiveness of media literacy in research conducted by Guess et al. (2020) in India and the U.S., which found that respondents were able to distinguish between mainstream and fake news articles. Badrinathan (2021) attempted a digital literacy intervention with a quasi-experimental design during the 2019 election campaign in Bihar, in which participants were trained in digital literacy to spot misinformation prior to the campaign and were later interviewed face-to-face post-vote and shown misinformation, based on the party they had supported. BJP supporters would not accept correction to the misinformation presented about their party (Badrinathan, 2021). Taken together, these two studies raise important questions about selective exposure and partisan motivated reasoning in India, theories that are supported by a number of studies in many Western democracies (Bolsen et al., 2014; Leeper & Slothuus, 2014; Peterson & Kagalwala, 2021).

Research Questions

Given the comparative lack of research on the characteristics of misinformation, the pages deploying misinformation, and types of engagement with misinformation in India in 2019, this study asks several research questions.

RQ1: What were the characteristics of fact-checked stories flagged for misinformation during the 2019 election?

RQ2: Which political parties were associated with misinformation claims identified by fact-checkers and how widely was party-related misinformation disseminated?

RQ3: How can we best classify party affinity of unverified public pages and groups?

RQ4: Which political parties were most often mentioned in these positive (pro-party) and negative (anti-party) misinformation claims and to what extent did users engage with this misinformation (Likes, Shares, Comments)?
Data and Methods

Fact-checked Stories

I identified all 10 online fact-checking platforms in India that are signatories to the International Fact-Checking Network (IFCN) as of 2019, which included firms owned by mainstream media such as The Times of India, India Today, as well as online only media such as Boomlive and Factchecker. The IFCN was launched by the Poynter Institute, which has an ethical code, standards, and methods that IFCN verified fact-checking organizations must follow in order to obtain and maintain certification.

Figure 1. Number of misinformation stories from nine fact-checker firms.
The fact-checked stories published between 1st March 2019 and 25th May 2019 include the pre-campaign period from 1 to 10 March, and the seven different phases of voting in the election and the days following the last phase of voting on 19 May, until 23 May when results were announced. The data were obtained from the individual fact-checker websites. I excluded one fact-checker that focused only on misinformation from leader speeches because misinformation disseminated on social media was not included.

Figure 1 provides the summary of fact-checked stories published by different fact-checker organizations in the period under study. Of 1,302 stories flagged by fact-checkers for misinformation, there was an average of 145 per organization, but the number published varied considerably across the 9 fact-checker firms from 265 published by Fact Crescendo to 26 published by Digiteye. Among the 1,302 stories from these fact-checking firms, many stories were related to similar claims although they may have been posted on different platforms. There were only 737 unique misinformation claims. All fact-checker firms checked content in different Indian languages and regions, and all but one firm published articles in English in which they provide the correction to the misinformation. The one firm that published their findings in Hindi rather than English was not a problem for this research, given that as a speaker of several Indian languages I read and coded these for a number of variables.

Coding Fact-checked Stories

Each fact-checked story consists of the misinformation claim, its truthfulness or falsity which is a statement provided by the fact-checker, platform(s) of dissemination, content type such as photo or video or text, and how the story was debunked. To address the research questions above, and specifically RQ1, I built a database with the following information on each fact-checked story or post. The database includes a dozen variables, most of which were provided by the fact-checkers for each story, including:
1) Name of the fact-checker firm that published this misinformation story or post;

2) Date: Day, Month, Year the fact-checked story or post was published;

3) Truthfulness: A story or post was labelled “false” or “misleading” or “partially true” or “true” by the fact-checker;

4) Political: A misinformation story was coded political if it mentioned anything related to the election, any issues, and any stakeholders (e.g. Any political parties, candidates, politicians and their supporters or detractors, the campaign, the Electoral Commission of India, voting machines, voters, citizens, and voting groups such as women or first-time voters, and any local, regional or national issues);

5) Pro-Party: Any positive statements about a party, its candidates, issues, policies, record and performance, its supporters and voting support, etc., and the party named in the positive statement;

6) Anti-Party: Any negative statements about a party, its candidates, issues, policies, record and performance, its supporters and voting support, etc., and the party named in the negative statement;

7) Narendra Modi: If the misinformation story mentioned the incumbent Prime Minister of the Government of India, of the Bharatiya Janata Party (BJP), then this was coded yes, if not then no;

8) Rahul Gandhi: If the misinformation story mentioned Rahul Gandhi, the main challenger and leader of the Opposition in the Lok Sabha and leader of the Indian National Congress (INC) party, then this was coded yes, if not then no;

9) Content Type: if the misinformation post was a photo or video or text or news article or clickbait which, like truthfulness (see 3 above), was stated by the fact-checker;
10) Claim: The actual text of the misinformation story or post, which is also provided by the fact-checker;

11) Similar story: If a misinformation story has been fact-checked by more than one fact-checker, then this was coded yes, if not then no; and

12) Unique ID: A number that I assigned to each of the 1,302 fact-checked stories.

Of these 12 variables, less than a handful (incumbent and opposition leader mentioned, political, similar story) required decisions by the coder. Moreover, noting whether or not a party leader, described above as incumbent or challenger, was mentioned in the claim also did not require substantive judgment on the part of the coder.

Only two variables required substantive judgment from the coder: Tone of the misinformation claim toward the party mentioned in the claim (pro-party refers to positive and anti-party refers to negative) in posts or stories. In coding the misinformation claims in these fact-checker flagged stories as pro-party (positive) and anti-party (negative), based on all parties or political actors mentioned, I followed best practices from the many election campaign studies conducted in Western contexts that used content analysis to code tone in the news. I mention one of the most relevant studies here as an example. In their study of an election campaign in Denmark, Hopmann et al. (2010) coded the valence or tone of television news stories; in each story that referred to “the campaign or at least one Danish party or politician, all actors appearing in a news story were coded (1,367 appearances of parties and politicians included in the study were coded), and the party affiliation of each politician was coded” (p. 395). My analysis of misinformation stories and posts also coded each story related to the campaign and any politician or party as discussed in variable 4 above, on whether the story or post was political. I then coded the party affiliation of any candidate or politician mentioned in the post or story, and the tone (negative or anti-party, and positive or pro-party) of the misinformation claim toward the party mentioned in the claim. Examples of coding follow.
A misinformation post with the following claim, ‘Wing Commander Abhinandan’s wife appeals to BJP to not politicize sacrifice of soldiers,’ was found to be false by a fact-checker. I coded this claim as: political, anti-BJP, with video content. Another post with the following claim, ‘Terrorism casualties, incidents and ceasefire violations are more under NDA than UPA 2,’ (NDA refers to the BJP-led National Democratic Alliance (NDA) and UPA2 refers to the INC-led United Progressive Alliance (UPA) between 2009-2014). This post was labelled false by a fact-checker. I coded this as: political, pro-INC, anti-BJP, and mentions incumbent Narendra Modi, an image. If more than one party or politician is mentioned, then the claim was coded for tone toward all those mentioned.

Another claim, ‘Pakistani flags waved at Rahul Gandhi’s Wayanad campaign,’ was found to be false by a fact-checker. I coded this claim as: political, anti-INC, mentions challenger Rahul Gandhi, an image. Another claim, ‘a father thrashing his son when the latter admits to voting for Congress,’ was found to be false by a fact-checker. I coded this claim as: political, anti-INC, a video. This information was used to address RQ2.

The fact-checkers annotated whether a story falls into one of four categories: 1) false, 2) misleading, 3) partially true, or 4) true. In the rare instances when annotations were absent, I categorized it based on the claim and content: for example, photoshopped or doctored images or video were considered false, while out-of-context images or videos were coded as misleading. Some misinformation claims did not have any political parties associated with them and were removed from the analysis comparing pro-party (positive) and anti-party (negative) posts or stories. For example, a claim ‘Google CEO Sundar Pichai cast his vote today in India’ displayed no association with any political party, although it referred to the election.

There were also instances of non-political misinformation. Fake health related claims such as “hot coconut water cures cancer” and “matchstick powder can treat scorpion bite,” and “wild pigeon can cure hepatitis and cancer” were among the popular stories with
misinformation circulating across social media platforms and WhatsApp. In total, 7.7% of 1,302 cases were classified as non-political misinformation. A reliability check was conducted by a trained coder with years of experience in conducting content analysis using a random sample of 191 (14.6%) of the misinformation stories. High reliability using Cohen’s Kappa = 0.93 was found. Kappa is more robust than simple percentage agreement between two coders, because it takes into account the possibility of the agreement occurring by chance (Dunaway, 2013).

Misinformation Posts on Facebook

Process of obtaining misinformation posts

To address RQs 2, 3 and 4, I examine these misinformation cases on the Facebook platform. From the 1,302 cases of misinformation identified by fact-checkers, there were 5,432 Facebook posts containing this misinformation published on public pages and groups, which I obtained from CrowdTangle for analysis (Garmur et al., 2019). I discuss the process by which I identified these 5,432 posts used here, which is displayed in Figure 2 below.

First, it is important to note that fact-checkers usually embed the actual misinformation post on their webpage and in an archive, and these posts are mostly from Facebook and Twitter, so they are often still available unless the post is deleted by the user or source. Each embedded post on a fact-checker’s webpage typically has an associated Facebook URL that became the basis for my search in CrowdTangle. The URL of the misinformation post was my search term on CrowdTangle. Second, if the associated Facebook post was from a public page or group, then the CrowdTangle search would obtain all public posts that had shared the Facebook post. Because my search was based on the Facebook URL, this ensures that every post on a public page associated with that URL is captured, unlike a text search using key words which may be prone to noise. Thus, I capture the actual misinformation ‘signal’ but with low or nearly zero ‘noise.’
In addition, each related fact-checked story can have more than one embedded Facebook URL. This can be due to two factors: a) the fact-checker might have referred to more than one post to debunk a misinformation claim, and b) due to the overlap of stories across fact-checkers, each fact-checker might have referred to different but related post to debunk the misinformation claim. For example, if a misinformation claim A was fact-checked by factchecker F1 and F2, and F1’s webpage contained an embedded Facebook link U1 and F2’s webpage contained links U2 and U3, then we would have three URLs U1, U2 and U3 related to a misinformation claim A. Another example, if claim B was fact-checked by F1, F2, and F3, and all these fact-checkers referred to same embedded Facebook post U, then we would have only one, URL U, related to misinformation claim B. For each of the 1,302 misinformation posts I followed this procedure, first using the URL in the post to search CrowdTangle and download all posts from public pages or groups mentioning the URL, then adding the corresponding UniqueID from one of the original 1,302 stories to the CrowdTangle datafile, and I repeated this task for every one of these misinformation stories. After the misinformation posts from CrowdTangle were obtained for each story, I link them with the characteristics coded above for each misinformation story using the ‘UniqueID’ variable.

Figure 2. Process of obtaining misinformation posts from CrowdTangle and coding them to produce the final merged dataset.
In the final merged dataset, each observation refers to a Facebook post and its features include the twelve variables mentioned above, as well as information from Facebook on the number of Shares, Likes, and Comments, along with the date of the post, and page name. Of the 5,432 Facebook posts, this study focuses on the 4,478 posts with political misinformation. The remaining 954 posts from the dataset, such as those on fake health cures and non-political posts were removed. These 4,478 political posts stem from 1,317 unique Facebook pages, and are discussed in Figure 5.

It is important to note that of the 1,302 misinformation stories, there were 737 unique claims, as others were similar. Of the 5,432 Facebook posts yielded in the search on CrowdTangle using the URL, these posts were related to only 371 claims of misinformation on Facebook out of 737 unique claims, because the remaining 366 claims were either deleted from Facebook or were not found on public pages or were disseminated on other social media platforms.

Studying misinformation is a challenge in the Indian context as there is no pre-existing database constructed to identify fake news or hyper-partisan content such as the ones used by Allcott & Gentzkow (2017) and Grinberg et al. (2019) to study fake news in the US. I do not have access to ‘trust’ tools such as NewsGuard used by Guess, Aslett, et al. (2021) and there is no equivalent to NewsGuard in India. A contribution of this study to the field of misinformation research is beginning to build such a database with this study on India, as well as providing a methodological approach to identify misinformation and the hyper-partisan sources on Facebook. It is worth noting that 12.51 million posts were shared on Facebook from these partisan pages and groups posting 4,478 misinformation claims during the campaign. Figure 5 displays engagement with these 4,478 posts for each of the parties mentioned in the posts coded as pro- or anti-party from the misinformation database I developed and described above. These posts stem from 1,317 unique Facebook pages that I describe as hyper-partisan. Figure 6 displays engagement with all 12.51 million
posts stemming from these 1,317 unique Facebook pages, and the decision rules on coding a page affiliation with a party are described below.

Coding party affinity of an unverified Facebook page or group

Table 1 displays the top 20 unique pages, of the 1,317 unique pages, spreading misinformation flagged by fact-checkers, and the number of misinformation posts made by those pages over the course of the campaign along with my coding of the party affinity (the pro- or anti-party affinity) of the page. Party affinity of a Facebook page or group was assigned based on the maximum of the sum-total of misinformation posts that had been coded as pro- and anti- one or more political parties on a page, which is given by:

\[
\text{Party Affinity} = \max\{\Sigma^{\text{pro-party}_i}, \Sigma^{\text{anti-party}_i}\}, \text{ where } i = \text{parties}.
\]

<table>
<thead>
<tr>
<th>Page/Group Name</th>
<th>Party Affinity</th>
<th>No of Misinformation Posts</th>
</tr>
</thead>
<tbody>
<tr>
<td>We Support Shehla Rashid ✅</td>
<td>Anti BJP</td>
<td>80</td>
</tr>
<tr>
<td>ألا ببتكرب الله تبطمینة آلقلوب</td>
<td>Anti BJP</td>
<td>68</td>
</tr>
<tr>
<td>I Am With Ravish Kumar NDTV Mission Modi 2024 में अपने 100 मिनन्ओं को जरड़ें</td>
<td>Anti BJP</td>
<td>62</td>
</tr>
<tr>
<td>Truth of Indian politics</td>
<td>Anti INC</td>
<td>61</td>
</tr>
<tr>
<td>DR. SAMBIT PATRA FANS CLUB</td>
<td>Anti INC</td>
<td>59</td>
</tr>
<tr>
<td>ABP News</td>
<td>Anti BJP</td>
<td>57</td>
</tr>
<tr>
<td>I am with Constitution Rvish kumar NDTV</td>
<td>Anti BJP</td>
<td>57</td>
</tr>
<tr>
<td>India Needs Asaduddin Owaisi (AIMIM Zindabad)</td>
<td>Anti BJP</td>
<td>50</td>
</tr>
<tr>
<td>मेरा भारत महान</td>
<td>Anti INC</td>
<td>47</td>
</tr>
<tr>
<td>we support public opinion</td>
<td>Anti BJP</td>
<td>46</td>
</tr>
<tr>
<td>i support ravish kumar i support truth</td>
<td>Anti BJP</td>
<td>45</td>
</tr>
<tr>
<td>BJP MISSION 350+ ‘LOKSABHA-2024’</td>
<td>Anti INC</td>
<td>43</td>
</tr>
<tr>
<td>Page/Group Name</td>
<td>Party Affinity</td>
<td>No of Misinformation Posts</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Rohit Sardana and Sudhir Chaudhary Fan Club</td>
<td>Anti INC</td>
<td>40</td>
</tr>
<tr>
<td>HUM CONGRESS K SATH HAIN</td>
<td>Anti BJP</td>
<td>37</td>
</tr>
<tr>
<td>एक कदम हिन्दु राष्ट्र की ओर</td>
<td>Anti INC</td>
<td>33</td>
</tr>
<tr>
<td>I Support Punya Prasun Bajpai</td>
<td>Anti BJP</td>
<td>32</td>
</tr>
<tr>
<td>नमो भक्त। हर नमो समर्थक जुड़ते ही अपने 50 मिनटों को अवश्य जोड़े।</td>
<td>Anti INC</td>
<td>31</td>
</tr>
<tr>
<td>Samajwadi Party Online Sena</td>
<td>Anti BJP</td>
<td>31</td>
</tr>
<tr>
<td>ममता मुक्त। },जुड़ते ही अपने 50 मिनटों को अवश्य जरड़े।</td>
<td>Anti INC</td>
<td>30</td>
</tr>
</tbody>
</table>

For example, the source in Table 1 ‘We Support Shehla Rashid’ was labelled anti-BJP, because out of 80 misinformation posts, 74 were anti-BJP and 3 were pro-Communist Party of India (CPI) and pro-INC, that is, max{74, 3, 3}. Another source ‘I M With Amit Shah’ was coded pro-BJP, out of 5 misinformation posts, 3 were pro-BJP, and 2 were anti-INC: max{3, 2}. Another source ‘Mission Modi 2024 में अपने 100 मिनटों को जरड़ें’ was coded anti-INC, out of 61 misinformation posts, 28 were anti-INC, 20 were pro-BJP, 7 anti-BJP, 3 anti-AAP, 2 anti-CPI and 1 anti-SP: max{28, 20, 7, 3, 2, 1}. I did not rely on the page name to code the party affinity as on these public pages with partisan misinformation posts supporting or attacking different parties was observed. For example, the group ‘Mission Modi 2024 में अपने 100 मिनटों को जोड़ें’ appears to be pro-BJP from the name but also contained 7 anti-BJP misinformation posts presumably from partisans supporting other parties. However, based on the decision rule this source was labelled anti-INC as there were 28 anti-INC misinformation posts compared to 20 pro-BJP posts and more above.

Figure 3 displays the distribution of positive or pro-party and negative or anti-party misinformation posts across the different parties. It shows that the incumbent BJP was by far targeted with the most anti-party misinformation posts, followed by the INC. BJP supporters or paid party workers were the likely source of negative or anti-INC posts. Many
opposition parties, their supporters and party workers were likely driving the larger number of anti-BJP posts, and perhaps the INC also had a digital army targeting the BJP. My interviews with digital cell team members running social media operations from BJP and INC in Bengaluru in 2019 made clear that both parties were equally capable of managing robust digital campaigns (Arabaghatta Basavaraj, 2022).

![Graph showing distribution of pro-party (positive) and anti-party (negative) misinformation posts on Facebook public pages and groups, March 1-May 23, 2019 national election campaign (N=4,478).]

To compare the prevalence of posts at the source level – from the pages and groups that posted misinformation during the campaign – I use the 4,478 posts, which came from 1,317 unique pages and groups described above. I refer to these as political or hyper-partisan pages and groups based on my review of each of these 1,317 pages posting misinformation content, and the source affinity based on number of misinformation posts (the top 20 are listed in Table 1). I determined the pro- and anti-party orientation of each of the 1,317 Facebook pages or groups based on the decision rule described in the methods.
section. To briefly reiterate, a Facebook page or group (source) was coded for party affinity as anti-party or pro-party based on the maximum of the sum-total of misinformation posts per anti- and pro-party as described above.

I code the source affinity in a way that is similar to classification of a URL as fake news based on the URL domain name, a practice followed in other misinformation studies (Allcott & Gentzkow, 2017; Grinberg et al., 2019).

These 1,317 sources posted a total of 12.51 million posts on Facebook between March 1st 2019 and May 23rd 2019 obtained via CrowdTangle. I then linked the positive or pro-party and negative or anti-party affinity of the source, with the 12.51 million posts. Using this larger dataset, I show the distribution of pro-party and anti-party posts and the engagement they attracted in the form of – Likes, Shares and Comments, to address RQ4. Assuming that fact-checker firms identified the minimum amount of misinformation in circulation during the campaign, this larger data set is interesting because of the much larger number of posts made by these sources.

Findings

The timeline of all the stories published by the nine fact-checker firms based on the classification provided can be seen in Figure 4. Fact-checkers verify the claim flagged for misinformation for its correctness and then label the claim as false or misleading or partly true or true. Figure 4 shows that taking all cases together, the fact-checked cases were predominantly false, some were misleading, and there was only a small number of posts labelled as partly true or true—which were excluded from further examination. The campaigning officially began from 10th March 2019 and the first phase of voting in the election was on 11th April, and until then there were 372 fact-checked stories. Out of 1,302 stories, 712 fact-checked stories were published during the election's seven voting phases, beginning on April 11th and ending on May 19th, 2019.
Two-thirds of the misinformation stories were common among the fact-checkers – different fact-checkers examined misinformation with the same claim, but the source or platform where the misinformation was found may have been different or the same. When the same claim is flagged and fact-checked across different firms, it (1) validates and complements the existing meta-data, for example, one firm may have fact-checked a claim found on Facebook, while another firm found the same claim on Twitter, (2) provides an indicator of the popularity of a misinformation claim, and (3) serves as an indicator of reliability of the fact-checking process. For instance, several photos of campaigning were used to falsely claim that Pakistan’s flag was waved during Rahul Gandhi’s rally in the Lok Sabha seat of Wayanad, in Kerala, the seat he won in 2019 (the misinformation on the Pakistan flag being waved was presumably being used to visually signal the INC’s so-called Muslim appeasement). This claim was debunked by 8 out of 9 fact-checkers, making this the most common fact-checked misinformation claim across these firms. On Facebook, this claim alone received 4,636 shares, 1,804 likes and 411 comments through different posts. This story was posted and shared by sources such as ‘Mission Modi 2024 में अपने 100 मित्रों को जोड़ें’, ‘देश का DNA’, ‘Narendra Modi PM of India’, and ‘We Support Narendra Modi 2024’.

In another example, an out-of-context video was used to falsely claim that Indian Air Force pilot Abhinandan was dancing with Pakistani soldiers. This was reported by 7 out of 9 fact-checker firms, and the misinformation was widely circulated by Pakistan’s media outlets on Facebook and Twitter users. And in another instance, 7 fact-checker firms had verified out-of-context images of Google CEO Sundar Pichai, which falsely claimed that he visited India to cast his vote in the 2019 national election.

In sum, in addition to the examples mentioned above, 11 similar claim were flagged for misinformation by 6 fact-checker firms, 22 similar claim flagged by 5 fact-checker firms, 46 similar claim flagged by 4 fact-checker firms, 71 similar claim flagged by 3 fact-checker firms and 124 similar claim flagged by 2 fact-checker firms. The duplicates, those found by more than one firm, can be seen as a measure of reliability to validate the fact-
checking process. These amount to 737 unique claims and reflect the minimum size of the potential pool of misinformation observed by fact-checkers in the ground reality of the digital campaign.

Figure 4. Timeline of types of misinformation stories on fact-checker websites between March 1 – May 25, 2019

Political parties

I examined the fact-checked stories for evidence of partisanship and whether they promoted or attacked parties and leaders on different platforms to address RQ2 and RQ3, and the latter was answered in the methods section. The positive self-promotional misinformation stories contain pro-party claims and negative misinformation stories contain anti-party claims. Some examples of pro-party claims in misinformation stories flagged by fact-checkers include: pro-BJP ‘Amit Shah promises to bring back black
money’, pro-INC ‘Huge turnout at Congress gathering in Nagpur’, pro-BJD ‘Exit polls predict massive victory of BJD in Odisha assembly polls’, pro-TDP ‘Surveys predict the victory of Telugu Desam Party in the upcoming Andhra Pradesh Legislative Assembly Elections-2019’, pro-SP ‘US president Barack Obama endorses Akhilesh Yadav for PM of India’, and pro-TMC ‘ISKCON urges People to Vote for TMC’. A list of political parties is provided in the Appendix.

Many national and regional parties were targeted with anti-party claims on Facebook in the 2019 campaign, and a number of examples are given here. An anti-BJP fake photo showed ‘Narendra Modi and Adolf Hitler pulling ears of children.’ An anti-INc fake photo showed the popular Lok Sabha member for Thiruvananthapuram, Kerala, ‘Shashi Tharoor distributing money to a crowd.’ An anti-TMC post was on ‘TMC goons killing a BJP worker.’ An anti-AAP fake story noted, ‘Man who slapped Arvind Kejriwal is AAP worker.’ An anti-CPI fake story noted, ‘Kanhaiya Kumar campaigning behind terrorist Afzal Guru’s photo.’

Engagement

Having coded each misinformation claim mentioning a party or politician as positive (pro-party) or negative (anti-party) for the parties named in the post, RQ4 asked about engagement with this misinformation and is addressed in Figure 5. Panels a, b and c on the left show the distribution of Shares, Likes and Comments for pro-party posts (naming the BJP, INC and CPI) and on the left panels d, e and f show the distribution of Shares, Likes and Comments for anti-party posts (naming the BJP, INC, CPI, AAP, SP and TMC). Parties named in a very low number of misinformation posts are not shown in Figure 5. There were over twice as many negative or anti-party posts than pro-party posts. The incumbent BJP was named in the most positive or pro-party posts, as well as the most anti-party posts.
It is important to distinguish between these three forms of engagement because they signify different factors such as the diffusion and reach of posts, as well as the level of engagement. For instance, shares promote the diffusion of a misinformation post given the network structure of Facebook, whereas comments can lead to online debate on the digital platform. Figure 5 shows the distribution of interactions (Shares, Likes and Comments), received by 4,478 misinformation posts on Facebook. Of pro-party posts, 14.1% (631) were pro-BJP, 1.9% (86) were pro-INC and 0.8% (37) were pro-CPI. These pro-party posts were presumably made by the party or its affiliates and supporters. Of anti-party posts, 62.5% (2,800) were anti-BJP, 21.6% (970) were anti-INC, 1.6% (76) were anti-TMC, 1.1% (48) were anti-SP, 0.8% (37) were anti-CPI and 0.5% (25) were anti-AAP.

There were more than 10^4 Shares and Likes for pro-BJP posts whereas the comparable number for pro-INC and pro-CPI posts was lower. Pro-INC posts received a similar number of Likes to pro-BJP posts, but were shared less often. Pro-CPI posts received less than 10^3 Likes. All three parties received Comments around 10^3 times. From Figure 5a, it can be seen that pro-BJP posts attracted more Shares than pro-INC and pro-CPI posts. Figure 5b shows that pro-BJP and pro-INC posts received a similar range of Likes but pro-BJP posts received slightly more Shares than pro-INC or pro-CPI. Figure 5c shows that pro-BJP posts received more Shares than pro-INC and pro-CPI posts.

In Figure 6, using the total number of posts on the pages or groups that had posted misinformation during the campaign, panels a, b and c show the distribution of Shares, Likes and Comments from pro-party sources (related to BJP, INC, CPI, TMC, TDP and RJD parties). Panels d, e, f show the distribution of Shares, Likes and Comments from anti-party sources (for BJP, INC, SP, TMC, CPI and AAP parties).
Figure 5. Log-binned distribution of measures of engagement with pro-party (positive) and anti-party (negative) misinformation posts on Facebook (N=4,478), March 1-May 23, 2019: Shares and Likes ranged from 1 to 10,000, Comments ranged from 1 to 1,000, based on the party.

Note. These 4,478 misinformation posts are from 1,317 unique pages on Facebook
Figure 6 shows the distribution of interactions in the form of Shares, Likes and Comments, received by all 12.51 million Facebook posts from 1,317 pages and groups that had posted fact-checked misinformation. The distribution is based on the assigned party affinity of the sources, a process described in methods above. The vast majority of these posts are not misinformation posts. Balance ratios (positive minus negative posts) for each party would show the predominance of negative or anti-party posts.

In Figure 6, panels a, b and c show the distribution of Shares, Likes and Comments from pro-party sources (related to BJP, INC, CPI, TMC, TDP and RJD parties). Panel d, e, f show the distribution of Shares, Likes and Comments from anti-party sources (related to for BJP, INC, SP, TMC, CPI and AAP parties).

Pro-BJP misinformation garnered higher engagement overall than pro-party posts from other parties, i.e., more than 10^5 times for Shares and Likes, and 10^4 for Comments. Shares for pro-INC posts were slightly more than pro-BJP posts, but the pro-BJP posts were posted more often. Pro-BJP, Pro-CPI and Pro-TMC posts garnered more Comments, i.e., more than 10^4, and greater than 10^3 for Pro-INC and Pro-TDP posts. Different interactions (Likes, Shares and Comments) with pro-party posts about other parties’ posts was over 10^1 times.

Anti-INC posts were shared more often than anti-BJP posts, more than 10^5 times. Though anti-INC posts received more Likes, anti-BJP posts were more common than anti-INC posts, and there were more Comments on anti-INC posts, just under 10^5 times. Anti-CPI and anti-TMC posts have a similar distribution for Shares, and anti-TMC has a distribution similar to anti-BJP and anti-INC for Comments. About 48.31% of anti-BJP posts received 40% of total Shares, 38.5% of total Likes and 36.6% of total Comments; 33.3% of anti-INC posts received 36.5% of total Shares, 37.33% of total Likes and 40.45% of total Comments; 0.4% of anti-SP posts received 0.47% of total Shares, 0.35% of total Likes and 0.35% of total Comments; 0.35% of anti-TMC posts received 1.04% of total Shares, 0.9% of total Likes and 0.9% of total Comments; 0.17% of anti-CPI posts received
3% of total Shares, 1.1% of total Likes and 1% of total Comments; 0.05% of anti-AAP posts received 0.01% of total Shares, 0.006% of total Likes and 0.003% of total Comments.

Figure 6. Log-binned distribution of measures of engagement with all 12.51 million posts from 1,317 unique pages and groups posting pro-party (positive) and anti-party (negative) misinformation on Facebook March 1-May 23, 2019.
It is useful to consider the patterns in the data looking at parties mentioned in pro- and anti-party misinformation posts (N = 4,478) which is the basis for Figure 5, versus parties mentioned in all of the posts N = 12.51 million from the hyper-partisan pages posting misinformation, in Figure 6. By comparing these two figures, we can see the engagement received by misinformation posts and the overall volume of posts from the pages/groups that posted misinformation.

Both Narendra Modi and Rahul Gandhi were more often the targets of misinformation than other party leaders. There was also a higher proportion of negative claims about Modi compared to Rahul Gandhi. It has been argued elsewhere that the BJP in the 2014 election had centered its communication around Narendra Modi, and he attracted vote mobilizers, and the INC centered its communication around Rahul Gandhi (Ahmed et al., 2016; Chhibber & Ostermann, 2014). In the misinformation data studied here, although many cases of political satire focused on Rahul Gandhi or Narendra Modi, other cases focused on different INC or BJP party leaders. For example, an unknown Facebook user posted a fake quote from the former Congress party prime minister Manmohan Singh, which was flagged by factcheckers on May 13, the day after Delhi voted. The false claim was that former PM Manmohan Singh said: “By Electrifying every Indian Village, Modi Government has increased the risk of deaths due to electrocution. Villagers have never seen electricity & also don’t know how to use them, if any mishaps happen, who will be responsible?” Another example is from an INC propaganda page that posted “Hand pump set up by BJP MP Manoj Tiwari,” which was flagged by factchecker on April 3. Still other examples focused on different party leaders. For example, on April 29, Satire News Media targeted the Samajwadi Party (SP) leader with the satirical claim: “Akhilesh Yadav has blamed PM Narendra Modi for trashing bowlers from Yadav community in IPL.” On May 22, the day before results were counted, a BJP propaganda page targeted the SP leader with “Samajwadi party supporters celebrate with a PM Akhilesh billboard ahead of poll results that will be declared tomorrow.” The same page
continued on May 23 with “Billboard wishing Akhilesh Yadav as the possible Prime Minister of India.”

Interestingly, partisan pages on opposing sides have used the same fake content to differently frame it in the context of their own narratives. For example, an art installation video clip that was used by the pro-INCP page to blame the BJP alleging corruption and electoral fraud, was also used by a pro-BJP to blame the INC leader for having been involved in corruption. Similarly, a video in which an ambulance was stuck in the road was used by a pro-BJP page to blame INC and alleged it was stuck due to Rahul Gandhi’s rally, whereas a pro-INCP page used the same video with the same claim to blame a BJP candidate in Delhi. However, the video of the stopped ambulance was from 2017 and had nothing to do with either party.

In another instance, pro-INCP propaganda pages had claimed: ‘Wing Commander Abhinandan Varthaman’s father joins Congress,’ and ‘Rahul Gandhi won Wayanad seat by the highest margin in this Lok Sabha election.’ Pro-BJP propaganda pages had claimed: ‘Nirav Modi testified that he bribed Congress leaders to flee India,’ and ‘BJP flag's flag hoisted in Balochistan, Pakistan.’ (Nirav Modi, who is not related to Narendra Modi, is a diamond jewelry designer who fled India after being accused of defrauding the Punjab National Bank of $1.8 billion).

There appears to have been recycling of the same content to suit the party’s strategy as an attack or as a rebuttal. In the same vein, debunked misinformation stories are

2 https://www.altnews.in/european-art-installation-video-shared-as-cash-recovered-from-kamal-naths-secretary/
https://www.boomlive.in/old-political-cartoon-targeting-the-bjp-not-created-by-american-cartoonist/
used by the political parties to suit their claim and were shared widely in their ecosystem. For that matter, official pages of many political parties have shared misinformation quoting a traditional media outlet’s news story. For example, the traditional print newspaper *National Herald*, which is actually owned by INC so it is not a politically independent news organization, ran a story on corruption charges against the Modi government that noted in 2014, ‘200 tonnes of gold’ from the Reserve Bank of India (RBI) were sent to Switzerland. This story was shared by an INC official on social media pages and the fact-checkers debunked it as false, based on an RBI press release. Many Pakistani news media and Twitter handles were involved in spreading misinformation after the Balakot air-strike in February 2019, interestingly these stories were shared by the opposition parties in India and targeted the BJP.

There are instances where the precision of the image or video or voice were poorly doctored—cheap fakes, presumably with the intention was to remind audiences of an issue or event or person. For example, a poorly doctored image of Narendra Modi’s wife holding a placard with an appeal to not vote for him was used, which was widely shared across social media platforms. In some cases, out-of-context images were used claiming opposition parties endorsed their party leaders. For instance, a claim that said an actor named Dharmendra praised the late Prime Minister Indira Gandhi on her treatment of bureaucrats during her government, with a misleading out-of-context image. This was also of concern because Dharmendra’s wife Hema Malini and son Sunny Deol, were BJP candidates contesting seats in the 2019 national election.

A strange case that emerged from this study was a mythical political leader named Anil Upadhyay, who was claimed to be a leader of the INC and Member of Legislative

3 http://newsmobile.in/articles/2019/05/06/dont-believe-the-news-of-rbi-sending-200-tonnes-of-gold-abroad-heres-the-truth/
5 http://newsmobile.in/articles/2019/04/24/dharmendra-didnt-make-this-statement-heres-the-fact-check/
Assembly and Member of Parliament in some stories whereas other stories claimed he was a BJP leader, but in fact there is no such politician in either party by this name and this has been debunked by many fact-checker firms. Some of the claims associated with this name include, ‘Congress MP Anil Upadhyay thrashed a cop’, ‘BJPs Anil Upadhyay violated the election code of conduct’, ‘Congress MLA Anil Upadhyay was seen praising PM Modi’ and ‘Gujarat BJP MLA Anil Upadhyaya beats a Dalit boy for buying a new car’. This name has been used by partisan pages supporting both parties to defame the other party.

Discussion and Conclusion

Several important findings emerge from this study of misinformation in 2019 election, drawing on the evidence from internationally verified factcheckers and Facebook posts. First, political campaigning with misinformation on Facebook was a common practice for many political parties in India just as it is elsewhere, given that electoral gain is the primary goal (Nai, 2020; Roemmele & Gibson, 2020). Many political parties and their affiliates and supporters were producing misinformation promoting themselves with pro-party (positive) posts or targeting opponents with anti-party (negative) posts on Facebook. This is a cause for concern in future campaigns because there are many political parties in India and fact-checkers are likely to become overwhelmed.

New developments in crowdsourcing misinformation may mean citizens can help to stem the tide of misinformation in the future (Kazemi et al., 2021). For example, the enthusiastic responses from users to the WhatsApp tipline in 2019, with tens of thousands of requests by users to have messages fact-checked clearly reflects that not everyone believes the information they see on WhatsApp. Although Kazemi et al. (2021) do not provide any numbers on party political unique messages on WhatsApp, they did mention that the main themes emerging from the data in the 2019 election on WhatsApp were attacks on the BJP leader, pro-BJP messages, and messages critical of the INC leader. Their

findings from WhatsApp appear to lend support to the findings presented here on misinformation on Facebook.

Second, and with respect to user engagement with misinformation, this study finds that the incumbent BJP was most often attacked or targeted, and the incumbent party deployed pro-party messages more than other parties did, in line with extant research on challengers and incumbents discussed earlier (Walter et al., 2014; Gainous & Wagner, 2014; Petkevic & Nai, 2022; Maier & Nai, 2021). These findings suggest that the INC had an active and dynamic social media campaign including affiliates that promoted positive posts, along with supporters of other opposition parties, shared negative posts attacking BJP. The incumbent BJP and its affiliates and supporters had more self-promotional posts flagged for misinformation than negative misinformation posts attacking other parties.

Although many parties were making fake claims or targeting other parties with misinformation, the BJP and INC were the focus of most of the claims flagged for misinformation irrespective of whether it was self-promotional or negative and targeting others. The three parties most often targeted with negative misinformation on Facebook in 2019 were the incumbent BJP at the national level, followed by the INC, which had defeated the BJP in three state-level elections in late 2018 to become incumbent, and the incumbent TMC in West Bengal.

Third, with respect to parties using pro-party misinformation for self-promotion, a large number of negative or anti-BJP claims were from INC official social media pages, and pro-INc unofficial propaganda pages whereas less emphasis was placed by these INC pages on self-promotion. By contrast, BJP official and unofficial propaganda or pro-BJP pages, produced more self-promotion claims than claims attacking the INC or other parties.

Fourth, is worth remembering that on Facebook a user typically likes or follows a public page such as a political party’s page or a party leader’s page in order to receive their posts on the timeline. Therefore, we can assume that many Facebook users liking or sharing
a party’s posts are already predisposed to vote for a party or a candidate. Comparing the two platforms, Stier, Bleier, Leitz & Strohmaier (2018) describe Twitter as a place where politicians focus on debate whereas for candidates the “strategic value” of Facebook users “lies in mobilization.” It is not possible to confirm in this study that mobilization was the result of Facebook use in India’s national election in 2019, where turnout was already high.

It is important to remember that the data from this study were obtained after Facebook India (2019) reported in March 2019, just after the start of official campaign, that it had taken down hundreds of pages for “coordinated inauthentic behavior,” which the company claimed were linked to individuals in the IT cell of the Congress party. Facebook (2019) also reported removing a handful of pages that were followed by millions and linked to Silvertouch, a company that had made ads for the BJP. Although Facebook did not disclose the number of followers these pages had, possibly because they knew that many of the followers were bots, by removing these pages in advance of the 2019 campaign, the volume and diffusion of misinformation that might have emerged on the platform during the campaign may have been diminished substantially. These pages were removed due to coordinated action that was inauthentic but not because of their content, according to Facebook (2019), and news accounts of the report mentioned that both parties denied any involvement (Kalra & Sayeed, 2019).

A limitation of this study, as previously indicated, is that fact-checkers are not perfect information gatherers and may have missed misinformation, yet numerous studies in Western contexts have relied on fact-checker stories and these were discussed earlier. Nevertheless, questions on the reliability of fact-checking have been raised by Allcott et al. (2019), and it is important to consider the reliability of fact-checking in India in 2019. The fact-checking process requires checking various sources, as many times the truthfulness of a post could be found in the comments by users who may be party volunteers or workers rebutting the false claim. In some cases, the non-election institution or organization referred to in a post with a false claim corrects the false claims. For example, when Rahul Gandhi tweeted a screenshot of an Oxford dictionary which mentioned a word
called ‘Modilie’ to claim that Modi is a liar and that such a word exists on the Oxford dictionary, his claim was falsified by the Oxford dictionary commenting on his Tweet that no such word exists. As studies have shown the positive influence that the fact-checked stories have on the electorate (Fridkin et al., 2015; Wintersieck, 2017), fact-checking ideally should be independent of partisanship or ideological preference.

Though there were instances of verified party pages spreading misinformation, a lot of misinformation came from pro-party pages and groups on Facebook, by which I mean partisan pages sharing information that is pro- or positive toward one party or against another. Many of these pages or groups were created few months or weeks ahead of the 2019 election, based on my investigation of transparency details (the page created date is given on the Facebook page), for the 1,302 fact-checked cases. I also observed that even though a post was labelled as misinformation, it was nevertheless liked, shared or commented upon and sometimes in ways that indicate the user did not care about the misinformation label, which also suggests the user engaging with the post may have not been the average user but a strong partisan or a paid party worker or affiliate. This indicates the need for more research on user engagement and who is engaging with partisan pages as well as official party pages.

It is important for future research to consider who is engaging with misinformation and why. Are those liking, sharing and commenting on misinformation posts representative of the attentive public for political news and information? Are they politically knowledgeable or politically naïve? How can we be certain that anyone sharing a pro-party or anti-party post was not a paid party worker? Was the average Facebook user more interested in sharing photos and updates with friends and family than in sharing information about politics and the 2019 campaign? Survey data and user browser data, following Guess

https://twitter.com/OxLanguages/status/1128966703583563776
et al. (2021) is costly but clearly important for future research on engagement with misinformation online.
References

